
C++ Toolkit Book The Database Access API

10-1

10. The Database Access API
Created: April 1, 2003
Updated: April 20, 2004

Database Access [Library dbapi: include | src]
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
This library provides the underlying user-layer and driver API for the NCBI database connectivity project.
The project's goal is to provide a access to various relational database management systems (RDBMS)
with a single uniform user interface. Consult the detailed documentation for details of the supported DBAPI
drivers.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• DBAPI Overview

• NCBI DBAPI User-Layer Reference

• Object hierarchy

• Includes

• Objects

• Object Life Cycle

• CVariant type

• Choosing the driver

• Data Source and Connections

• Main loop

• Input and Output Parameters

• Stored Procedures

• Cursors

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi

C++ Toolkit Book The Database Access API

10-2

• Updating BLOBs using cursors

• Using bulk insert

• NCBI DBAPI Driver Reference

• Overview

• The driver architecture

• Sample program

• Topics

• Error handling

• Driver context and connections

• Driver Manager

• Text and Image Data Handling

• Results loop

• Supported DBAPI drivers

• Sybase CTLIB

• Sybase DBLIB

• Microsoft DBLIB

• FreeTDS 0.60 (TDS ver. 8.0)

• ODBC

• MySQL Driver

dbapi [HYPERLINK "http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/
dbapi"include/dbapi | src/dbapi]

driver [include/dbapi/driver | src/dbapi/driver]

DBAPI Overview
(pending: DBAPI motivation, layers and architecture)

NCBI DBAPI User-Layer Reference

Object hierarchy
See Figure 1.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver

C++ Toolkit Book The Database Access API

10-3

Figure 1: Object Hierarchy

Includes
For most purposes it is sufficient to include one file in the user source file: dbapi.hpp.
 #include <dbapi/dbapi.hpp>

For static linkage the following include file is also necessary:
 #include <dbapi/driver/drivers.hpp>

Objects
All objects are returned by pointers to their respective interfaces. The null (0) value is valid, mean-
ing that no object was returned.

Object Life Cycle
In general, any child object is valid only in the scope of its parent object. This is because most of
the objects share the same internal structures. There is no need to delete every object explicitly,
as all created objects will be deleted upon program exit. Specifically, all objects are derived from
the static CDriverManager object, and will be destroyed when CDriverManager is destroyed. It is
possible to delete any object from the framework and it is deleted along with all derived objects.
For example, when a IConnection object is deleted, all derived IStatement, ICallableStatement
and IResultSet objects will be deleted too. For each object a Close() method is provided. It dis-

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html

C++ Toolkit Book The Database Access API

10-4

poses of internal resources, required for the proper library cleanup, but leaves the framework
intact. After calling Close() the object becomes invalid. This method may be necessary when the
database cleanup and framework cleanup are performed in different places in the code.

CVariant type
The CVariant type is used to represent any database data type (except BLOBs). It is an object,
not a pointer, so it behaves like a primitive C++ type. Basic comparison operators are supported
(==, !=, <) for identical internal types. If types are not identical, CVariantException is thrown.
CVariant has a set of getters to extract a value of a particular type, e.g. GetInt4(), GetByte(),
GetString(), etc. If GetString() is called for a different type, like DateTime or integer it tries to
convert it to a string. It it doesn't succeed, CVariantException is thrown. There is a set of factory
methods (static functions) for creating CVariant objects of a particular type, such as CVariant::
BigInt(), CVariant::SmallDateTime(), CVariant::VarBinary() etc. For more details please see
the comments in variant.hpp file.

Choosing the driver
There are several drivers for working with different SQL servers on different platforms. The ones
presently implemented are "ctlib" (Sybase), "dblib"(MS SQL, Sybase), "ftds" (MS SQLcross

platform). For static linkage these drivers should be registered manually; for dynamic linkage this
is not necessary. The CDriverManager object maintains all registered drivers.
 CDriverManager &dm = CDriverManager::GetInstance();
DBAPI_RegisterDriver_CTLIB(dm);
DBAPI_RegisterDriver_DBLIB(dm);

Data Source and Connections
The IDataSource interface defines the database platform. To create an object implementing this
interface, use the method CreateDs(const string& driver). An IDataSource can create objects
represented by an IConnection interface, which is responsible for the connection to the
database. It is highly recommended to specify the database name as an argument to the Cre-
ateConnction() method, or use the SetDatabase() method of a CConneciton object instead of
using a reqular SQL statement. In the later case, the library won't be able to track the current
database.
 IDataSource *ds = dm.CreateDs("ctlib");
IConnection *conn = ds->CreateConnection();
conn->Connect("user", "password", "server", "database");
IStatement *stmt = conn->CreateStatement();

Every additional call to IConnection::CreateStatement() results in cloning the connection for
each statement. These connections inherit the same default database, which was specified in the
Connect() or SetDatabase() method. Thus if the default database was changed by calling Set-
Database(), all subsequent cloned connections created by CreateStatement() will inherit this
particular default database.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariantException.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariantException.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/variant.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDriverManager.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IDataSource.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IDataSource.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IConnection.html

C++ Toolkit Book The Database Access API

10-5

Main loop
The library simulates the main result-retrieving loop of the Sybase client library by using the
IStatement::HasMoreResults() method:
 stmt->Execute("select à");
while(stmt->HasMoreResults()) {
 if(stmt->HasRows()) {
 IResultSet *rs = stmt->GetResultset();

 // Retrieve results, if any

 while(rs->Next()) {
 int col1 = rs->GetVariant(1).GetInt4();
 ...
 }
 }
}

This method should be called until it returns false, which means that no more results is avail-
able. It returns as soon as a result is ready. The type of the result can be obtained by calling the
IResultSet::GetResultType() method. Supported result types are eDB_RowResult,
eDB_ParamResult, eDB_ComputeResult, eDB_StatusResult, eDB_CursorResult.

The method IStatement::GetRowCount() returns the number of updated or deleted rows.
The IStatement::ExecuteUpdate() method is used for SQL statements that do not return

rows:
 stmt->ExecuteUpdate("update...");

int rows = stmt->GetRowCount();

The method IStatement::GetResultSet() returns an IResultSet object. The method IResult-
Set::Next() actually does fetch, so it should be always called first. It returns false when no more
fetch data is available. All column data, except Image and Text is represented by a single CVari-
ant object. The method IResultSet::GetVariant() takes one parameter û column number. Col-
umn numbers start with 1.

Input and Output Parameters
The method ICallableStatement::SetParam(const CVariant& v, const string& name) is used
to pass parameters to stored procedures and dynamic SQL statements. To ensure the correct
parameter type it is recommended to use CVariant type factories (static methods) to create a
CVariant of the required internal type. There is no internal representation for the BIT parameter
type, please use TinyInt of Int types with 0 for false and 1 for true respectively. Here are a few
examples: CVariant::Int4(Int4 *p), CVariant::TinyInt(UInt1 *p), CVariant::VarChar(const char *p,
size_t len) etc.

There are also corresponding constructors, like CVariant::CVariant(Int4 v), CVariant::
CVariant(const string& s), ..., but the user must ensure the proper type conversion in the argu-
ments, and not all internal types can be created using constructors.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html

C++ Toolkit Book The Database Access API

10-6

Output parameters are set by the ICallableStatement::SetOutputParam(const CVariant&
v, const string& name) method, where the first argument is a null CVariant of a particular type,
e.g. SetOutputParam(CVariant(eDB_SmallInt),"@arg").

Stored Procedures
The ICallableStatement object is used for calling stored procedures. Fist get the object itself by
calling IConnection::PrepareCall(). Then set any parameters. If the parameter name is empty,
the calls to SetParam() should be in the exact order of the actual parameters. Retrieve all results
in the main loop. Get the status of the stored procedure using the ICallableStatement::
GetReturnStatus() method.
 ICallableStatement *cstmt = conn->PrepareCall("ProcName");
Uint1 byte = 1;
cstmt->SetParam(CVariant("test"), "@test_input");
cstmt->SetParam(CVariant::TinyInt(&byte), "@byte");
cstmt->SetOutputParam(CVariant(eDB_Int), "@result");
cstmt->Execute();
while(cstmt->HasMoreResults()) {
 if(cstmt->HasRows()) {
 IResultSet *rs = cstmt->GetResultSet();
 switch(rs->GetResultType()) {
 case eDB_RowResult:
 while(rs->Next()) {

 // retrieve row results

 }
 break;
 case eDB_ParamResult:
 while(rs->Next()) {

 // Retrieve parameter row

 }
 break;
 }
 }
}

// Get status
int status = cstmt->GetReturnStatus();

It is also possible to use IStatement interface to call stored procedures using standard SQL
language call. The difference from ICallableStatement is that there is no -SetOutputParam()-
call. The output parameter is passed as regular -SetParam()- call with non nullCVariant argu-
ment. There is no GetReturnStatus() call in IStatement , so use the result type filter to get it.

 sql = "exec SampleProc @id, @f, @o output";
stmt->SetParam(CVariant(5), "@id");
stmt->SetParam(CVariant::Float(&f), "@f");
stmt->SetParam(CVariant(5), "@o");
stmt->Execute(sql);

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/ICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/IStatement.html

C++ Toolkit Book The Database Access API

10-7

while(stmt->HasMoreResults()) {
 IResultSet *rs = stmt->GetResultSet();

 if(rs == 0)
 continue;

 switch(rs->GetResultType()) {
 case eDB_ParamResult:
 while(rs->Next()) {
 NcbiCout << "Output param: "
 << rs->GetVariant(1).GetInt4()
 << endl;
 }
 break;
 case eDB_StatusResult:
 while(rs->Next()) {
 NcbiCout << "Return status: "
 << rs->GetVariant(1).GetInt4()
 << endl;
 }
 break;
 case eDB_RowResult:
 while(rs->Next()) {
 if(rs->GetVariant(1).GetInt4() == 2121) {
 NcbiCout << rs->GetVariant(2).GetString() << "|"
 << rs->GetVariant(3).GetString() << "|"
 << rs->GetVariant(4).GetString() << "|"
 << rs->GetVariant(5).GetString() << "|"
 << rs->GetVariant(6).GetString() << "|"
 << rs->GetVariant(7).GetString() << "|"
 << endl;
 } else {
 NcbiCout << rs->GetVariant(1).GetInt4() << "|"
 << rs->GetVariant(2).GetFloat() << "|"
 << rs->GetVariant("date_val").GetString() << "|"
 << endl;
 }
 }
 break;
 }
}
stmt->ClearParamList();

Cursors
The library currently supports basic cursor features such as setting parameters and cursor update
and delete operations.
 ICursor *cur = conn->CreateCursor("table_cur",
 "select ... for update of ...");
IResultSet *rs = cur->Open();
while(rs->Next()) {

C++ Toolkit Book The Database Access API

10-8

 cur->Update(table, sql_statement_for_update);
}
cur->Close();

Updating BLOBs using cursors
It is recommended to update BLOBs using cursors, because this is the only way to work with
ODBC driver and no additional connection is open.
 ICursor *blobCur = conn->CreateCursor("test",
 "select id, blob from BlobSample for update of blob");
IResultSet *blobRs = blobCur->Open();
while(blobRs->Next()) {
 ostream& out = blobCur->GetBlobOStream(2, blob.size());
 out.write(buf, blob.size());
 out.flush();
}

Note that GetBlobOStream() takes the column number as the first argument and this call is
invalid untill the cursor is open.

Using bulk insert
Bulk insert is useful when it is necessary to insert big amounts of data. The IConnection::
CreateBulkInsert() takes two parameters, the table name and number of columns. The CVari-
ant::Truncate(size_t len) method truncates the internal buffer of CDB_Text and CDB_Image
object from the end of the buffer. If no paramter specified, it erases the whole buffer.

NcbiCout << "Initializing BlobSample table..." << endl;
string im =;
IBulkInsert *bi = conn->CreateBulkInsert("BlobSample", 2);
CVariant col1 = CVariant(eDB_Int);
CVariant col2 = CVariant(eDB_Text);
bi->Bind(1, &col1);
bi->Bind(2, &col2);
for(int i = 0; i < ROWCOUNT; ++i) {
 string im = "BLOB data " + NStr::IntToString(i);
 col1 = i;
 col2.Truncate();
 col2.Append(im.c_str(), im.size());
 bi->AddRow();
}
bi->Complete();

NCBI DBAPI Driver Reference
(Low-level access to the various RDBMSs.)

• Overview

• The driver architecture

C++ Toolkit Book The Database Access API

10-9

• Sample program

• Topics

• Error handling

• Driver context and connections

• Driver Manager

• Text and Image Data Handling

• Results loop

• Supported DBAPI drivers

• Sybase CTLIB

• Sybase DBLIB

• Microsoft DBLIB

• FreeTDS 0.60 (TDS ver. 8.0)

• ODBC

• MySQL Driver

Overview
The NCBI DBAPI driver library describes and implements a set of objects needed to provide a
uniform low-level access to the various relational database management systems (RDBMS). The
basic driver functionality is the same as in most other RDBMS client APIs. It allows to open a
connection to a server, execute a command (query) on this connection and get the results back.
The main advantage of using the driver is that you don't have to change your own upper-level
code if you need to move from one RDBMS client API to another.

The driver can use two different methods to access the particular RDBMS. If RDBMS pro-
vides a client library for a given computer system (i.e. Sun/Solaris), then driver utilizes this library.
If there is no client library, then driver connects to RDBMS through a special gateway server
which is running on a computer system where such library does exist.

The driver architecture
There are two major groups of the driver's objects: the RDBMS independent objects, and the
objects which are specific to a particular RDBMS. The only RDBMS specific object which user
should be aware of is a "Driver Context". The "Driver Context" is effectively a "Connection" fac-

C++ Toolkit Book The Database Access API

10-10

tory. The only way to make a connection to the server is to call the Connect() method of a "Driver
Context" object. So, before doing anything with RDBMS, you need to create at least one driver
context object. All driver contexts implement the same interface defined in I_DriverContext class.
If you are working on a library which could be used with various RDBMS it is a good idea do not
create the driver context inside the library, but take a pointer to I_DriverContext instead.

There is no "real" factory for the driver contexts. The reason for that is it's not always possible
to statically link in the same binary the RDBMS libraries from different vendors. Most of them are
written in C and the name collisions do exist. The Driver Manager helps to overcome this prob-
lem. It allowes to create a mixture of statically linked and dynamically loaded drivers and use
them together in one executable.

The driver context creates the connection which is RDBMS specific, but before returning it to
the caller it puts it into an "envelope" of RDBMS independent object CDB_Connection. The same
is true for the commands and for the results - user gets the pointer to RDBMS independent "enve-
lope object" instead of the real one. This is a caller responsibility to delete those objects. The life
spans of the real object and the envelope one are not necessarily the same.

Once you have got the connection object, you could use it as a factory for the different types
of commands. The command object in it's turn serves as a factory for the results. The connection
is always single threaded, that means that you have to execute the commands and process their
results sequentially one by one. If you need to execute the several commands in parallel, you can
do it using multiple connections.

Another important part of the driver is an error and message handling. There are two different
mechanisms implemented. The first one is exceptions. All exceptions which could be thrown by
the driver are inherited from the single base class CDB_Exception. Driver uses the exception
mechanism whenever it's possible, but in many cases the underlying client library uses the call-
backs or handlers to report the error messages and prevents from throwing the exceptions. The
driver supply a handler's stack mechanism to manage these cases.

To send and to receive the data through the driver you have to use the driver provided
datatypes. The collection of the datatypes includes: one, two, four and eight byte integers; float
and double; numeric; char, varchar, binary, varbinary; datetime and smalldatetime; text and
image. All datatypes are derived from a single base class CDB_Object.

Sample program
This program opens one connection to the server and selects the database names and the date
when each database was created (assuming that table "sysdatabases" does exist). In this exam-
ple the string "XXX" should be replaced with the real driver name.
 #include <iostream>
#include <dbapi/driver/public.hpp>
#include <dbapi/driver/exception.hpp>
/* Here, XXXlib has to be replaced with the real name, e.g. "ctlib" */
#include <dbapi/driver/XXXlib/interfaces.hpp>
USING_NCBI_SCOPE;
int main()
{
 try { // to be sure that we are catching all driver related exceptions

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/I_DriverContext.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=I_DriverContext&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=C_DriverMgr&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Connection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Exception.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_TinyInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_SmallInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Int.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_BigInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Float.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Double.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Numeric.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Char.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_VarChar.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Binary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_VarBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_DateTime.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_SmallDateTime.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Text.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Image.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Object.html

C++ Toolkit Book The Database Access API

10-11

 // We need to create a driver context first
 // In real program we have to replace CXXXContext with something real
 CXXXContext my_context;
 // connecting to server "MyServer"
 // with user name "my_user_name" and password "my_password"
 CDB_Connection* con = my_context.Connect("MyServer", "my_user_name",
 "my_password", 0);
 // Preparing a SQL query
 CDB_LangCmd* lcmd =
 con->LangCmd("select name, crdate from sysdatabases");
 // Sending this query to a server
 lcmd->Send();
 CDB_Char dbname(64);
 CDB_DateTime crdate;
 // the result loop
 while(lcmd->HasMoreResults()) {
 CDB_Result* r= lcmd->Result();
 // skip all but row result
 if (r == 0 || r->ResultType() != eDB_RowResult) {
 delete r;
 continue;
 }
 // printing the names of selected columns
 cout << r->ItemName(0) << " \t\t\t"
 << r->ItemName(1) << endl;
 // fetching the rows
 while (r->Fetch()) {
 r->GetItem(&dbname); // get the database name
 r->GetItem(&crdate); // get the creation date
 cout << dbname.Value() << ' '
 << crdate.Value().AsString("M/D/Y h:m")
 << endl;
 }
 delete r; // we don't need this result anymore
 }
 delete lcmd; // delete the command
 delete con; // delete the connection
 }
 catch (CDB_Exception& e) { // printing the error messages
 CDB_UserHandler_Stream myExHandler(&cerr);
 myExHandler.HandleIt(&e);
 }
}

Topics
Error handling

The error handling is almost always a pain when you are working with RDBMS. The different sys-
tems implement the different approaches. You could get the error messages through the return
codes, callbacks, handlers and/or exceptions. These messages could have different formats. It
could be just an integer (error code) or some structure or a set of callback's arguments. The NCBI

C++ Toolkit Book The Database Access API

10-12

DBAPI driver intercepts all those error messages in all different formats and converts them into
the objects of CDB_Exception derived types. The following types are used: CDB_SQLEx This
type is used if error message has come from a SQL server and indicates an error in SQL query. It
could be a wrong table or column name or just a wrong syntax of SQL query. The message
details could be obtained using the following methods:

• OriginatedFrom() - returns a SQL server name

• BatchLine() - returns a line number in SQL batch which did generate an error

• Message() - returns the error message itself

• Severity() - returns the severity of this message (assigned by SQL server)

• ErrCode() - returns the integer code for this message (assigned by SQL server)

• SqlState() - returns a byte string describing an error (it's not useful most of the time)

CDB_RPCEx An error message has come while RPC or stored procedure was executed on a
server. The methods to use:

• OriginatedFrom() - returns a server name

• ProcName() - returns a procedure name

• ProcLine() - returns a line number inside the procedure

• Message() - returns the error message itself

• Severity() - returns the severity of this message (assigned by a server)

• ErrCode() - returns the integer code for this message (assigned by a server)

CDB_DeadlockEx To report about deadlock. The methods to use:

• OriginatedFrom() - returns a SQL server name

• Message() - returns the error message itself

CDB_DSEx Any error which has come from a RDBMS and is not a SQL query or RPC related.
The methods to use:

• OriginatedFrom() - returns a server name

• Message() - returns the error message itself

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Exception.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_SQLEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_RPCEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_DeadlockEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_DSEx.html

C++ Toolkit Book The Database Access API

10-13

• Severity() - returns the severity of this message (assigned by a server)

• ErrCode() - returns the integer code for this message (assigned by a server)

CDB_TimeoutEx To report about timeout. The methods to use:

• OriginatedFrom() - returns a server name

• Message() - returns the error message itself

CDB_ClientEx Any client side error. The methods to use:

• OriginatedFrom() - returns the name of method or function which reports the error

• Message() - returns the error message itself

• Severity() - returns the severity of this message

• ErrCode() - returns the integer code for this message

Driver uses two ways to deliver the error message object to an application. If it is possible to
throw an exception, then driver throws the error message object. If not, then driver calls the user's
error handler with a pointer to this object as an argument. It's not always convenient to process all
types of error messages in one error handler. Some users may want to use a special error mes-
sage handler inside some function or block and a default error handler outside. To accommodate
these cases the driver provides a handler stack mechanism. The top handler in the stack gets the
error message object first. If it knows how to deal with this message, then it processes the mes-
sage and returns true. If handler wants to pass this message to the other handlers, then it returns
false. So, driver pushing the error message object through the stack until it gets true from the
handler. The default driver's error handler which just printout the error message to stderr is
always on a bottom of the stack. The another tool which user may want to use for error handling
is the CDB_MultiEx objects. This tool allows to collect the multiple CDB_Exception objects into
one container and than throw this container as one object.

Driver context and connections
Every program which is going to work with NCBI DBAPI driver should create at least one Driver
Context object first. The main purpose of this object is to be a Connection factory, but it's a good
idea to customize this object a little bit prior to open any connection. The first step is to setup two
message handler stacks. The first one is for error messages which are not bound to some particu-
lar connection or could occur inside the Connect() method. Use PushCntxMsgHandler() to
populate it. The other stack serves as a initial message handler stack for all connections which
will be derived from this context. Use PushDefConnMsgHandler() method to populate this stack.
The second step of customization is a time-outs setting. The SetLoginTimeout() and SetTime-

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_TimeoutEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_ClientEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_UserHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_UserHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDBHandlerStack&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_UserHandler_Stream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_MultiEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_Exception.html

C++ Toolkit Book The Database Access API

10-14

out() methods do the job. If you are going to work with text or image objects in your program, you
need to call SetMaxTextImageSize() to define the maximal size for such objects. Objects which
exceed this limit could be truncated.
 class CMyHandlerForConnectionBoundErrors : public CDB_UserHandler
{
 virtual bool HandleIt(CDB_Exception* ex);
 ...
};
class CMyHandlerForOtherErrors : public CDB_UserHandler
{
 virtual bool HandleIt(CDB_Exception* ex);
 ...
};
...
int main()
{
 CMyHandlerForConnectionBoundErrors conn_handler;
 CMyHandlerForOtherErrors other_handler;
 ...
 try { // to be sure that we are catching all driver related exceptions
 // We need to create a driver context first
 // In real program we have to replace CXXXContext with something real
 CXXXContext my_context;
 my_context.PushCntxMsgHandler(&other_handler);
 my_context.PushDefConnMsgHandler(&conn_handler);
 // set timeouts (in seconds) and size limits (in bytes):
 my_context.SetLoginTimeout(10); // for logins
 my_context.SetTimeout(15); // for client/server communications
 my_context.SetMaxTextImageSize(0x7FFFFFFF); // text/image size limit
 ...
 CDB_Connection* my_con =
 my_context.Connect("MyServer", "my_user_name", "my_password",
 I_DriverContext::fBcpIn);
 ...
 }
 catch (CDB_Exception& e) {
 other_handler.HandleIt(&e);
 }
}

The only way to get a connection to a server in NCBI DBAPI driver is through a Connect()
method in driver context. The first three arguments: server name, user name and password are
obvious. Values for mode are constructed by a bitwise-inclusive-OR of flags defined in EConnec-

tionMode. If reusable is false, then driver creates a new connection which will be destroyed as

soon as user delete the correspondent CDB_Connection (the pool_name is ignored in this

case).
Opening a connection to a server is an expensive operation. If program opens and closes

connections to the same server multiple times it worth to call the Connect() method with
reusable set to true. In this case driver does not close the connection when the correspondent

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/I_DriverContext.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_Connection&d=C

C++ Toolkit Book The Database Access API

10-15

CDB_Connection is deleted, but keeps it around in a "recycle bin". Every time an application calls
the Connect() method with reusable set to true, driver tries to satisfy the request from a "recy-

cle bin" first and opens a new connection only if it is necessary.
The pool_name argument is just an arbitrary string. Application could use this argument to

assign a name to one or more connections (to create a connection pool) or to invoke a connec-
tion by name from this pool.

...
// Create a pool of four connections (two to one server and two to another)
// with the default database "DatabaseA"
CDB_Connection* con[4];
int i;
for (i = 4; i--;) {
 con[i]= my_context.Connect((i%2 == 0) ? "MyServer1" : "MyServer2",
 "my_user_name", "my_password", 0, true,
 "ConnectionPoolA");
 CDB_LangCmd* lcmd= con[i]->LangCmd("use DatabaseA");
 lcmd->Send();
 while(lcmd->HasMoreResults()) {
 CDB_Result* r = lcmd->Result();
 delete r;
 }
 delete lcmd;
}
// return all connections to a "recycle bin"
for(i= 0; i < 4; delete con_array[i++]);
...
// in some other part of the program
// we want to get a connection from "ConnectionPoolA"
// but we don't want driver to open a new connection if pool is empty
try {
 CDB_Connection* my_con= my_context.Connect("", "", "", 0, true,
 "ConnectionPoolA");
 // Note that server name, user name and password are empty
 ...
}
catch (CDB_Exception& e) {
 // the pool is empty
 ...
}

Application could combine in one pool the connections to the different servers. This mecha-
nism could also be used to group together the connections with some particular settings (default
database, transaction isolation level, etc.).

C++ Toolkit Book The Database Access API

10-16

Driver Manager
It's not always known upfront which NCBI DBAPI driver will be used in some particular program.
Sometimes you want a driver to be a parameter in your program. Sometimes you need to use two
different drivers in one binary but can not link them statically because of name collisions. Some-
times you just need the driver contexts factory. The Driver Manager is intended to solve these
problems.

Let's rewrite our Sample program using the Driver Manager. The original text was.
 #include <iostream>

#include <dbapi/driver/public.hpp>
#include <dbapi/driver/exception.hpp>
/* Here, XXXlib has to be replaced with the real name, e.g. "ctlib" */
#include <dbapi/driver/XXXlib/interfaces.hpp>
USING_NCBI_SCOPE;
int main()
{
 try { // to be sure that we are catching all driver related exceptions
 // We need to create a driver context first
 // In real program we have to replace CXXXContext with something real
 CXXXContext my_context;
 // connecting to server "MyServer"
 // with user name "my_user_name" and password "my_password"
 CDB_Connection* con = my_context.Connect("MyServer", "my_user_name",
 "my_password", 0);
 ...

If we use the Driver Manager we could allow the driver name to be a program argument.
 #include <iostream>

#include <dbapi/driver/public.hpp>
#include <dbapi/driver/exception.hpp>
#include <dbapi/driver/driver_mgr.hpp> // this is a new header
USING_NCBI_SCOPE;
int main(int argc, const char* argv[])
{
 try { // to be sure that we are catching all driver related exceptions
 C_DriverMgr drv_mgr;
 // We need to create a driver context first
 I_DriverContext* my_context= drv_mgr.GetDriverContext(
 (argc > 1)? argv[1] : "ctlib");
 // connecting to server "MyServer"
 // with user name "my_user_name" and password "my_password"
 CDB_Connection* con = my_context->Connect("MyServer", "my_user_name",
 "my_password", 0);
 ...

This fragment creates an instance of Driver Manager, dynamically loads driver's library,
implicitly register this driver, creates the driver context and makes a connection to a server. If you
don't want to load some drivers dynamically for any reason, but want to use the Driver Manager
as a driver contexts factory, then you need to statically link your program with those libraries and
explicitly registered them using functions from dbapi/driver/drivers.hpp header.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=C_DriverMgr&d=C

C++ Toolkit Book The Database Access API

10-17

Text and Image Data Handling
The text and image are SQL datatypes which can hold up to 2Gb of data. Because they could be
huge, RDBMS keep these values separately from the other data in the table. In most cases the
table itself keeps just a special pointer to a text/image value and an actual value occupies a sepa-
rate disk space. This implicates some difficulties in text/image data handling.

When you retrieves a large text/image value, you often prefer to "stream" it into your program
and process it chunk by chunk rather than get it as one piece. Some RDBMS clients allow to
stream the text/image values only if a correspondent column is the only column in select state-
ment.

Let's suppose that you do have a table: table T (i_val int, t_val text) And you need to select all
i_val, t_val where i_val > 0. The simplest way is to use a query:

 select i_val, t_val from T where i_val > 0

But it could be expensive. Because two columns are selected, some clients will put the whole
row in a buffer prior to give the access to it to the user. The better way to do this is to use two
selects:

 select i_val from T where i_val > 0select t_val from T where i_val > 0

Looks ugly, but could save you a lot of memory.
Updating and inserting the text/image data is also not a straightforward process. For small

texts and images it is possible to use just SQL insert and update statements, but it will be ineffi-
cient (if possible at all) for the large ones. The better ways to insert and to update the texts and
images is to use SendData() method of CDB_Connection object or to use the CDB_SendDat-
aCmd object.

Recommended algorithm for inserting the text/image data:

• Using a SQL insert statement insert a new row into a table. Use "" value for each text col-
umn (0x0 for image column) you are going to populate. Use NULL only if this value is
going to remain NULL.

• Using a SQL select statement select all text/image columns from this row.

• Fetch the row result and get a I_ITDescriptor for each column

• Finish the results loop

• Use SendData() method or CDB_SendDataCmd object to populate the columns.

Example
Let's suppose that we want to insert a new row into table T described above.
 CDB_Connection* con;

...
// preparing the query
CDB_LangCmd* lcmd= con->LangCmd("insert T (i_val, t_val) values(100, ' ')\n");
lcmd->More("select t_val from T where i_val = 100");
// Sending this query to a server

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_Connection&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_SendDataCmd&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_SendDataCmd&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_SendDataCmd.html

C++ Toolkit Book The Database Access API

10-18

lcmd->Send();
I_ITDescriptor* my_descr;
// the result loop
while(lcmd->HasMoreResults()) {
 CDB_Result* r= lcmd->Result();
 // skip all but row result
 if (r == 0 || r->ResultType() != eDB_RowResult) {
 delete r;
 continue;
 }
 // fetching the row
 while(r->Fetch()) {
 // read 0 bytes from the text (some clients need this trick)
 r->ReadItem(0, 0);
 my_deskr = r->GetImageOrTextDescriptor();
 }
 delete r; // we don't need this result anymore
}
delete lcmd; // delete the command
CDB_Text my_text;
my_text.Append("This is a text I want to insert");
//sending the text
con->SendData(my_descr, my_text);
delete my_descr; // we don't need this descriptor anymore
...

Recommended algorithm for updating the text/image data:

• Using a SQL update statement replace the current value with "" for text column (0x0 for
image)

• Using a SQL select statement select all text/image columns you want to update in this row.

• Fetch the row result and get a I_ITDescriptor for each column

• Finish the results loop

• Use SendData() method or CDB_SendDataCmd object to populate the columns.

Example
 CDB_Connection* con;

...
// preparing the query
CDB_LangCmd* lcmd= con->LangCmd("update T set t_val= ' ' where i_val = 100");
lcmd->More("select t_val from T where i_val = 100");
// Sending this query to a server
lcmd->Send();
I_ITDescriptor* my_descr;
// the result loop
while(lcmd->HasMoreResults()) {
 CDB_Result* r= lcmd->Result();
 // skip all but row result

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CDB_SendDataCmd.html

C++ Toolkit Book The Database Access API

10-19

 if (r == 0 || r->ResultType() != eDB_RowResult) {
 delete r;
 continue;
 }
 // fetching the row
 while(r->Fetch()) {
 // read 0 bytes from the text (some clients need this trick)
 r->ReadItem(0, 0);
 my_deskr = r->GetImageOrTextDescriptor();
 }
 delete r; // we don't need this result anymore
}
delete lcmd; // delete the command
CDB_Text my_text;
my_text.Append("This is a text I want to see as an update");
//sending the text
con->SendData(my_descr, my_text);
delete my_descr; // we don't need this descriptor anymore
...

Results loop
The connection in NCBI DBAPI driver is always single threaded. Application has to retrieve all
results from a current command prior to executing a new one. Not all of the results are always
meaningful for the application (i.e. an RPC always returns a status result regardles of either a
procedure has a "return something" statement or not), but all of them need to be retrieved. The
following results loop is recommended for all types of the commands:
 CDB_XXXCmd* cmd; // XXX could be Lang, RPC, etc.
...
while (cmd->HasMoreResults()) {
 // HasMoreResults() method returns true // if the Result() method needs to
be called.
 // It doesn't guarantee that Result() will return not NULL result
 CDB_Result* res = cmd->Result();
 if (res == 0)
 continue; // a NULL res doesn't mean that there is no more results
 switch(res->ResultType()) {
 case eDB_RowResult: // row result
 while(res->Fetch()) {
 ...
 }
 break;
 case eDB_ParamResult: // Output parameters
 while(res->Fetch()) {
 ...
 }
 break;
 case eDB_ComputeResult: // Compute result
 while(res->Fetch()) {
 ...
 }
 break;
 case eDB_StatusResult: // Status result

C++ Toolkit Book The Database Access API

10-20

 while(res->Fetch()) {
 ...
 }
 break;
 case eDB_CursorResult: // Cursor result
 while(res->Fetch()) {
 ...
 }
 break;
 }
 delete res;
}

If you don't want to process some particular type of result, just skip the while (res->Fetch())
{...} in the corresponding case.

Supported DBAPI drivers

• Sybase CTLIB

• Sybase DBLIB

• Microsoft DBLIB

• FreeTDS 0.60 (TDS ver. 8.0)

• ODBC

• MySQL Driver

Sybase CTLIB

• Registration function (for the manual, static registration) DBAPI_RegisterDriver_CTLIB()

• Driver default name (for the run-time loading from a DLL) "ctlib"

• Driver library dbapi_driver_ctlib

• Sybase CTLIB libraries and headers used by the driver (UNIX) $(SYBASE_LIBS)
$(SYBASE_INCLUDE)

• Sybase CTLIB libraries and headers used by the driver (MS Windows) You will need
Sybase OpenClient package installed on your PC.Libraries: LIBCT.LIB LIBCS.LIB LIBBLK.
LIB. In MSVC++, go to "Tools" / "Options..." / "Directories" and set up the path to Sybase
OpenClient libraries and headers (for example "C:\Sybase\lib" and "C:\Sybase\include"
respectively). To run the application, you must set environment variable %SYBASE% to

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_CTLIB&d=f

C++ Toolkit Book The Database Access API

10-21

the Sybase OpenClient root directory (e.g. "C:\Sybase"), and also to have your interface
file there, in INI/sql.ini. In NCBI, we have the Sybase OpenClient libs installed in \\DIZZY
\public\Sybase.

• CTLIB-specific header (contains non-portable extensions) dbapi/driver/ctlib/interfaces.hpp

• CTLIB-specific driver context attributes "reuse_context", default = "true" "version", default =
"110" (also allowed:"100")

• Caveats

1. Cannot communicate with MS SQL server using any TDS version.

Sybase DBLIB

• Registration function (for the manual, static registration) DBAPI_RegisterDriver_DBLIB()

• Driver default name (for the run-time loading from a DLL) "dblib"

• Driver library dbapi_driver_dblib

• Sybase DBLIB libraries and headers used by the driver (UNIX) $(SYBASE_DBLIBS)
$(SYBASE_INCLUDE)

• Sybase DBLIB libraries and headers used by the driver (MS Windows) Libraries: LIB-
SYBDB.LIB See Sybase OpenClient installation and usage instructions in the Sybase
CTLIB section (just above).

• DBLIB-specific header (contains non-portable extensions) dbapi/driver/dblib/interfaces.hpp

• DBLIB-specific driver context attributes "version", default = "46" (also allowed:"100")

• Caveats

1. Text/image operations fail when working with MS SQL server, because MS SQL
server sends text/image length in the reverse byte order, and this cannot be fixed
(as it was fixed for FreeTDS) as we do not have access to the DBLIB source
code.

2. DB Library version level "100" is recommended for communication with Sybase
server 12.5, because the default version level ("46") is not working correctly with
this server.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ctlib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_DBLIB&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/dblib/interfaces.hpp

C++ Toolkit Book The Database Access API

10-22

Microsoft DBLIB

• Registration function (for the manual, static registration) DBAPI_RegisterDriver_MSD-
BLIB()

• Driver default name (for the run-time loading from a DLL) "msdblib"

• Driver library dbapi_driver_msdblib

• Microsoft DBLIB libraries and headers used by the driver NTWDBLIB.LIB

• Microsoft DBLIB-specific header (contains non-portable extensions) dbapi/driver/msdblib/
interfaces.hpp

• Microsoft DBLIB-specific driver context attributes NONE

• Caveats

1. On the lower level, the reading of a blob (image or text) cannot be performed in a
pure stream-wise fashion, and therefore the whole blob has to be read in advance.
Actually all contents of all columns get read up completely as soon as the row is
fetched(!). Although this is hidden from the user code, however it theoretically can
cause memory exhaustion and at least some performance overhead if the blob is
too big.

FreeTDS 0.60 (TDS ver. 8.0)

• Registration function (for the manual, static registration) DBAPI_RegisterDriver_FTDS8()
DBAPI_RegisterDriver_FTDS()

• Driver default name (for the run-time loading from a DLL) "ftds"

• Driver library dbapi_driver_ftds

• FreeTDS libraries and headers used by the driver $(FTDS8_LIBS)$(FTDS8_INCLUDE)

• FreeTDS-specific header (contains non-portable extensions) dbapi/driver/ftds/interfaces.
hpp

• FreeTDS-specific driver context attributes "version", default = <DBVERSION_UNKNOWN>
(also allowed: "42", "46", "70", "80", "100")

• Caveats

1. Nobody has ever tried working with any TDS version but the default (<DBVER-
SION_UNKNOWN>) one.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_MSDBLIB&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_MSDBLIB&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/msdblib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/msdblib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_FTDS8&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_FTDS&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ftds/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ftds/interfaces.hpp

C++ Toolkit Book The Database Access API

10-23

2. Although a slightly modified version of FreeTDS is now part of the public toolkit, it
retains its own license: the GNU Library General Public License.

3. The "compute results" functionality (like from SELECT ... AVERAGE ...) does not
work because current FreeTDS implementation cannot decipher the "compute
results" specific result set returned by server.

4. RPC is implemened via a language call, so it will work only if the OpenServer it is
communicating with has language handler installed (and it is not installed on some
NCBI OpenServers!).

5. The FreeTDS client library (the one using TDS protocol version 8.0) was tweaked
to work with the MS SQL server and significantly optimized. However, it will not
work with Sybase server.

6. Another, earlier non-tweaked version of FreeTDS client library theoretically should
be able to work with both MS SQL and SYBASE servers (using TDS protocol ver-
sion 4.2), however it was not thoroughly tested and can be pretty slow.

ODBC

• Registration function (for the manual, static registration) DBAPI_RegisterDriver_ODBC()

• Driver default name (for the run-time loading from a DLL) "odbc"

• Driver library dbapi_driver_odbc

• ODBC libraries and headers used by the driver (MS Windows) ODBC32.LIB ODBCCP32.
LIB ODBCBCP.LIB

• ODBC libraries and headers used by the driver (UNIX) $(ODBC_LIBS)
$(ODBC_INCLUDE)

• ODBC-specific header (contains non-portable extensions) dbapi/driver/odbc/interfaces.hpp

• ODBC-specific driver context attributes "version", default = "3" (also allowed:"2")"use_dsn",
default = "false" (if you have set this attribute to "true", you need to define your data
source using "Control Panel"/"Administrative Tools"/"Data Sources (ODBC)")

• Caveats

1. The CDB_Result::GetImageOrTextDescriptor() does not work for ODBC driver.
You need to use CDB_ITDescriptor instead. The other way to deal with texts/
images in ODBC is through the CDB_CursorCmd methods: UpdateTextImage
and SendDataCmd.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver/ftds/freetds/doc/COPYING.LIB
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_ODBC&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/odbc/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_ITDescriptor&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_CursorCmd&d=C

C++ Toolkit Book The Database Access API

10-24

2. On most NCBI PCs, there is an old header odbcss.h (from 4/24/1998) installed.
The symptom is that although everything compiles just fine, however in the linking
stage there are dozens of unresolved symbol errors for ODBC functions. Ask "pc.
systems" to fix this for your PC.

3. On UNIX, it's only known to work with Merant's implementation of ODBC, and it
has not been thoroughly tested or widely used, so surprises are possible.

MySQL Driver
There is a direct (without ODBC) MySQL driver in the NCBIC++ Toolkit DBAPI. However, the
driver realizes a very minimum functionality and does not support the following:

• Working with images by chunks (images can be accessed as string fieldsthough)

• RPC

• BCP

• SendData functionality

• Connection pools

• Parameter binding

• Canceling results

• ReadItem

• IsAlive

• Refresh functions

• Setting timeouts

